

Modellieren: Bewegungsabläufe

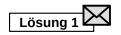
Vorbereiten des 3D-Modells

Auf der Grundplatte ein Koordinatensystem mit folgenden Eigenschaften festlegen:

- ♦ blau $\widehat{=} x_1$, grün $\widehat{=} x_2$
- $-1 \le x_1 \le 13$ ∧ $-1 \le x_2 \le 13$

1LE

1 km


Szenenbeschreibung

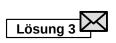
Am Saturn fliegen die beiden Raumschiffe Atlantis und Challenger vorbei.

	Atlantis	Challenger
Zum aktuellen Zeitpunkt befinden sich		
die Raumschiffe vom Saturn aus	Q(1 3)	P(12 -1)
gesehen an folgenden Postionen:		
Die Raumschiffe bewegen sich gradlinig in folgende Richtungen: Dabei haben Sie folgende Geschwindigkeiten:	$ \begin{pmatrix} 3 \\ 4 \end{pmatrix} $ $ 15 \frac{\text{km}}{\text{s}} $	$\begin{pmatrix} -1,25\\3 \end{pmatrix}$ $13\frac{km}{s}$

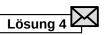
Forschungsauftrag

a) Platzieren Sie den Saturn und die beiden Raumschiffe im Modell.

- b) Stellen Sie Gleichungen für die Flugbahnen auf und berechnen Sie den Punkt, an dem sich die Flugbahnen schneiden. Überprüfen Sie Ihre Ergebnisse am Modell.
- c) Verschieben Sie das Raumschiff *Atlantis* auf seiner Flugbahn an eine neue Position. Bestimmen Sie die Zeit, die das Raumschiff benötigt, um von der Ausgangsposition an die neue Position zu gelangen.



d) $t \in \mathbb{R}$ ist die Zeit in Sekunden. Die Flugbahnen lassen sich durch folgende Gleichungen in Abhängigkeit von der Zeit angeben:

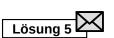

Atlantis:
$$\vec{x} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} + t \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}, a_1, a_2 \in \mathbb{R}$$

Challenger:
$$\vec{x} = \begin{pmatrix} 12 \\ -1 \end{pmatrix} + t \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
, $b_1, b_2 \in \mathbb{R}$

Bestimmen Sie a_1 , a_2 , b_1 und b_2 .

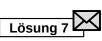
- e) Ermitteln Sie am Modell, ob die beiden Raumschiffe kollidieren. Kollidieren die beiden Raumschiffe nicht, dann bestimmen Sie näherungsweise, die kürzeste Distanz, die die beiden Raumschiffe je annehmen.
- f) Bestätigen Sie rechnerisch Ihre Ergebnisse aus e).

Bewegungsabläufe im 3D-Raum


Am Saturn fliegen die beiden Raumschiffe Discovery und Endeavour vorbei.

	Discovery	Endeavour
Zum aktuellen Zeitpunkt befinden sich	•	
die Raumschiffe vom Saturn aus	Q(5 2 3)	P(3 9 8)
gesehen an folgenden Postionen:	, ,	, ,
	(1,5)	/ 1 \
Die Raumschiffe bewegen sich	(1,5) (2,5)	$\begin{pmatrix} 1 \\ -0,4 \end{pmatrix}$
gradlinig in folgende Richtungen:	1	$\left -\frac{\sqrt{7}}{2} \right $
	$\left\langle \overline{\sqrt{2}} \right\rangle$	\ 5
Dabei haben Sie folgende	1.0 km	1 a km

Forschungsauftrag


Geschwindigkeiten:

a) Zeigen Sie, dass sich die Flugbahnen der beiden Raumschiffe nicht schneiden.

- b) Wie nahe kommen sich die beiden Raumschiffe? Nach welcher Zeit ist der Abstand zwischen den Raumschiffen am geringsten?

 Lösung 6
- c) Zu welchem Zeitpunkt befinden sich die beiden Raumschiffe auf einer "Flugebene" parallel zur Ebene x_1x_2 ?

