# Aufgaben zu Schnittpunkten von Graphen

### Schnittpunkte Berechnen

f und h sind Funktionen und  $K_f$  und  $K_h$  die dazugehörigen Graphen. Berechnen Sie sämtliche Schnittpunkte von  $K_f$  und  $K_h$ , wenn ...

a) 
$$f(x)=-2x+1$$
  
 $h(x)=x+\frac{2}{3}$   $x \in \mathbb{R}$ 

b) 
$$f(x)=5x^2+38x+69$$
  $x \in \mathbb{R}$   
 $h(x)=3x+9$ 

c) 
$$f(x)=x^3+\frac{11}{10}x^2-\frac{9}{5}x+3$$
  $x \in \mathbb{R}$   $h(x)=-\frac{2}{5}x^2-\frac{4}{5}x+3$ 

d) 
$$f(x)=-x^4+2x^3+17x^2-11$$
  $x \in \mathbb{R}$   
 $h(x)=2x^3+5$ 

e) 
$$f(x) = \frac{1}{6}x^4 + \frac{7}{12}x^2$$
  $x \in \mathbb{R}$   $h(x) = \frac{3}{12}x^4 - \frac{3}{2}$ 

f) 
$$f(x) = x \cdot 3^{x}$$
  $x \in \mathbb{R}$   $h(x) = 2 \cdot 3^{x}$ 

### Funktionsgleichung bestimmen

f und h sind Funktionen und  $K_f$  und  $K_h$  die dazugehörigen Graphen.

a) 
$$f(x)=x^2-\frac{9}{2}x+5, x \in \mathbb{R}$$

Die Lösungsmenge der Gleichung  $x^2 - \frac{15}{2}x + 14 = 0$  enthält alle Schnittstellen von  $K_1$  und  $K_2$  Geben Sie zwei

len von  $\,^{K_f}\,$  und  $\,^{K_h}\,$ . Geben Sie zwei mögliche Funktionsgleichung von  $\,^{h}\,$  an.

b) 
$$f(x)=2x-\frac{x^2}{2}, x \in \mathbb{R}$$

Die Lösungsmenge der Gleichung  $2^x + 4x^2 = 0$  enthält alle Schnittstellen von  $K_f$  und  $K_h$ . Geben Sie drei mögliche Funktionsgleichung von h an.

## **Argumentieren und Beweisen**

- a) f und h sind Funktionen mit  $f(x) = -x^4 \frac{1}{2}x^2 2 \text{ und}$   $h(x) = 2x^6 + x^2 + 1, x \in \mathbb{R}$   $K_f \text{ und } K_h \text{ sind die Graphen von } f$  und h. Zeigen Sie, dass  $K_f$  und  $K_h$  keine gemeinsamen Punkte haben.
- b) f und h sind Funktionen mit  $f(x) = -\frac{2}{5}x^3 2x^2 + x 4 \text{ und}$   $h(x) = -\frac{3}{4}x + 2 \text{ , } x \in \mathbb{R}$   $K_f \text{ und } K_h \text{ sind die Graphen von } f$  und h. Zeigen Sie, dass  $K_f$  und  $K_h$  sich mindestens einmal schneiden.

### Modellierungsaufgabe

In einem Unternehmen werden Erlös und Kosten in Abhängigkeit von der Stückzahl durch folgende Funktionen beschrieben:

Kosten:
$$K(x) = x^2 - 8x + 36$$
  
Erlös: $E(x) = 5x$ 

Kosten und Erlös in GE (=Geldeinheiten)

- a) Ab welcher Stückzahl macht das Unternehmen Gewinn und ab welcher Stückzahl fährt das Unternehmen wieder einen Verlust ein?
- b) Wie hoch ist der Gewinn bei einer Stückzahl von 5?



**Lösung:** https://www.henriks-mathewerkstatt.de/ 2028.Schnittpunkte.Aufgaben.L.pdf

