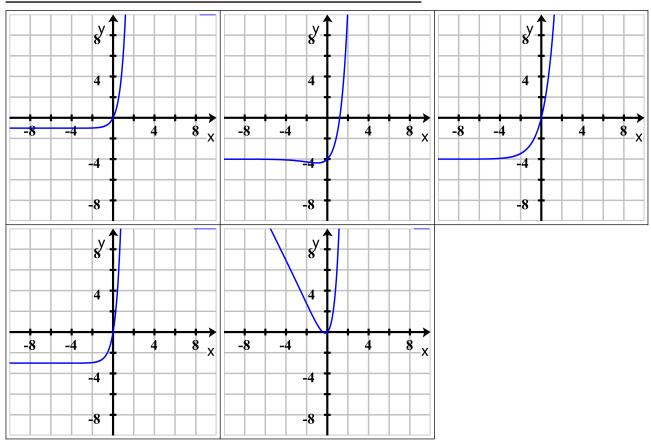
Schnittstellen von e-Funktionen

Die Funktionen

 $\begin{array}{lll} f\left(x\right) = 3 \operatorname{e}^{2x} - 3 \;, & h\left(x\right) = \operatorname{e}^{2x} - 1 \;, & p\left(x\right) = 4 \operatorname{e}^{x} - 4 \;, & k\left(x\right) = x \operatorname{e}^{x} - 4 \;, & t\left(x\right) = x \operatorname{e}^{x} + \operatorname{e}^{2x} - 2 x - 1 \;, \\ x \in \mathbb{R} \;. \; \text{Die dazugehörigen Graphen sind} \; \begin{array}{ll} K_{f} \;, & K_{p} \;, & K_{k} \; \operatorname{und} \; K_{t} \;. \end{array}$

Schaubilder



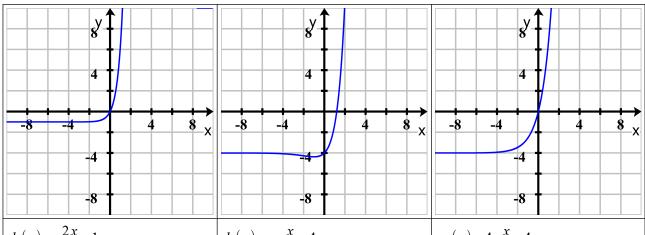
Ordnen Sie die Funktionsgleichungen den Schaubildern zu.

Schnittstellen

Gesucht sind die Stellen, an denen sich $\ ^K{}_f$ und $\ ^K{}_h$, $\ ^K{}_h$ und $\ ^K{}_t$, $\ ^K{}_p$ und $\ ^K{}_k$, sowie $\ ^K{}_h$ und $\ ^K{}_p$ sich schneiden.

Lösungsvorschläge

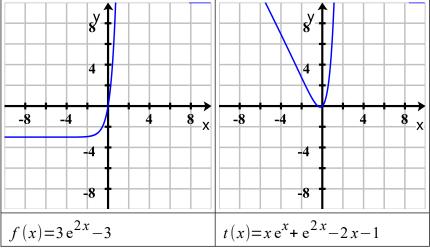
Schaubilder



$$h(x) = e^{2x} - 1$$

$$k(x) = x e^x - 4$$

$$p(x) = 4e^{x} - 4$$



Schnittstellen

 $\text{ von } ^K{}_f \text{ und } ^K{}_h \colon$

Setze f(x)=h(x):

$$3e^{2x} - 3 = e^{2x} - 1 \quad \begin{vmatrix} -e^{2x} + 3 \\ -e^{2x} + 3 \end{vmatrix}$$

$$2e^{2x} = 2 \quad | \div 2 \rangle$$

$$e^{2x} = 1 \quad | \ln \rangle$$

$$2x = 0 \quad | \div 2 \rangle$$

$$x = 0$$

Lösen durch logarithmieren.

von K_h und K_t :

Setze h(x)=t(x):

$$e^{2x}-1 = xe^{x}+e^{2x}-2x-1 \qquad \begin{vmatrix} -xe^{x}-e^{2x}+2x+1 \\ xe^{x}-2x = 0 & |x \text{ ausklammern} \\ x(e^{x}-2) = 0 & \end{vmatrix}$$

Nach dem Satz vom Nullprodukt ist x=0 oder $e^x-2=0 \Leftrightarrow x=\ln(2)$.

Lösen durch ausklammern.

von K_p und K_k :

Setze p(x)=k(x):

Nach dem Satz vom Nullprodukt $4-x=0 \Leftrightarrow x=4$.

Lösen durch ausklammern.

von K_h und K_p :

Setze h(x) = p(x):

mit a=1, b=-4 und c=3 in die Lösungsformel einsetzen:

$$u_{1, 2} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1}$$

$$u_{1, 2} = \frac{4 \pm 2}{2}$$

$$u_{1} = 3$$

$$u_{2} = 1$$

Rücksubstituton: $u \rightarrow e^x$

$$u_{1}: e^{x} = 3$$

$$e^{x} = 3 \qquad | \ln x = \ln(3)$$

$$x \approx 1,0986$$

$$x_{1} = \ln(3)$$

$$u_{2}: e^{x} = 1$$

$$e^{x} = 1 \qquad | \ln x = \ln(1)$$

$$x = 0$$

$$x_{2} = 0$$

Lösen durch Substitution.