Aufgaben zum Bogenmaß

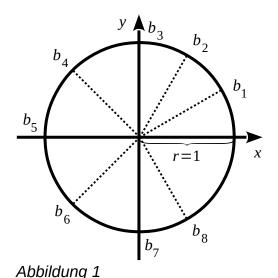
Vom Gradmaß zum Bogenmaß

Berechnen Sie zu den Winkeln φ das exakte Bogenmaß.

a)
$$\varphi = 120^{\circ}$$

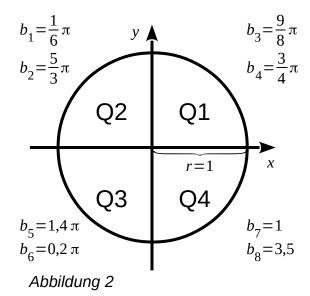
c)
$$\varphi = 45^{\circ}$$

e)
$$\varphi = 270^{\circ}$$


b)
$$\varphi = 4^{\circ}$$

d)
$$\varphi = 210^{\circ}$$

f)
$$\varphi = 315^{\circ}$$


Positionen im Einheitskreis (1)

Geben Sie das Bogenmaß für alle b_i $(1 \le i \le 8)$ an. Versuchen Sie die Aufgabe ohne Taschenrechner zu lösen.

Positionen im Einheitskreis (2)

Bestimmen Sie ohne Taschenrechner in welchem der vier Quadranten die Winkel liegen.

Abstände

Bestimmen Sie ohne Taschenrechner das Bogenmaß zwischen folgenden Positionen im Einheitskreis aus Abbildung 1.

- a) b_1 und b_2
- b) b_2 und b_6
- c) b_4 und b_5
- d) b_6 und b_8

Weiter immer weiter

Paul steht auf dem Einheitskreis an Position $b=\frac{\pi}{3}$. Paul geht gegen den Uhrzeigersinn im

Einheitskreis. Wie viel Runden ist Paul gelaufen, wenn er sich an folgenden Postionen befindet:

a)
$$b_1 = \frac{7}{3}\pi$$

b)
$$b_2 = \frac{4}{3}\pi$$

c)
$$b_3 = \frac{10}{3} \pi$$

d)
$$b_4 = \frac{17}{6} \pi$$

Lösung: https://www.henriks-mathewerkstatt.de/

2142.Trigonometrische_Funktionen.Bogenmass.Aufgaben.L.pdf