Aufgaben zu Symmetrien, Verschieben und Strecken

Symmetrien

Untersuchen Sie die Graphen der folgenden Funktionen auf Symmetrien und begründen Sie Ihre Aussagen:

a)
$$f(x)=x^2+4$$
, $x \in \mathbb{R}$

b)
$$f(x) = \frac{x^5}{5} - \frac{x^2}{4} + x$$
, $x \in \mathbb{R}$

c)
$$f(x)=e^x$$
, $x \in \mathbb{R}$

d)
$$f(x) = \sqrt{1-x^2}$$
, $x \in [-1; 1]$

e)
$$f(x) = \frac{x}{|x|} \sqrt{4 - x^2}$$
, $x \in [-2; 2] \setminus [0]$

f)
$$f(x) = (4-x^3)^4$$
, $x \in \mathbb{R}$

g)
$$f(x) = \frac{e^{2x} + 1}{e^x}$$
, $x \in \mathbb{R}$

h)
$$f(x) = \sin\left(x - \frac{\pi}{2}\right)$$
, $x \in \mathbb{R}$

Verknüpfen Sie die beiden Funktionen f und h so miteinander, dass der Graph der neu entstandenen Funktion Symmetrie Eigenschaften besitzt.

i)
$$f(x)=x^2-6x+9 \land h(x)=x^2(x+3)^2$$
; $x \in \mathbb{R}$ k) $f(x)=e^{-x^2} \land h(x)=x$; $x \in \mathbb{R}$

k)
$$f(x) = e^{-x^2} \land h(x) = x; x \in \mathbb{R}$$

j)
$$f(x)=e^{-x} \wedge h(x)=e^{x}; x \in \mathbb{R}$$

1)
$$f(x)=x^2-2x \land h(x)=x^3+1; x \in \mathbb{R}$$

Verschieben

Geben neue Funktionen (h) an, deren Graphen den angegebenen Bedingungen entsprechen. $x \in \mathbb{R}$

a) $f(x)=x^2-x$, K_h entsteht, wenn K_f b) $f(x)=(x+4)^5\cdot\sin(x)$, K_h um 2 LE nach links und 3 LE nach oben verschoben wird.

wenn K_f um 4 LE nach rechts und 5 LE nach unten verschoben wird.

Wie muss der Graph K_f verschoben werden, damit ...

c) ... der Graph von $h(x) = \cos(x)$ entsteht. Dabei ist $f(x) = \sin(x)$.

d) ... der Graph von $h(x)=e^{x+4}+x+5$ entsteht. Dabei ist $f(x)=e^x+x+1$.

e) ... der Graph von h(x)=(x-4)(x-3) entsteht. Dabei ist $f(x)=x^2-x$.

Strecken

Geben Sie eine Funktion f an, so dass ...

a) ... f die dreifache Periodenlänge wie h hat. Dabei ist $h(x) = \sin(\pi x)$.

b) ... K_f durch Strecken von K_h entsteht und $P\left(4\left|-\frac{5}{2}\right|\right)$ auf K_f liegt. Dabei ist $h(x) = \frac{x^2}{2} + x - 4$.

c) ... f eine nach oben geöffnete Parabel 2. grades mit dem Scheitel S(2|0) ist, so dass P(3|2) unterhalb von K_f liegt.